Sense a Temperatura do Quarto e Display no LCD Usando o Simulink ea Arduino UNO A figura 8 mostra o modelo completo do Simulink para o projeto. É ter 3 partes Entrada de hardware - Onde os dados dos sensores serão lidos Processamento de dados - É um filtro de média móvel. Saída de hardware - Os dados processados serão gravados no display usando este bloco. Outros componentes importantes do modelo são blocos de transição de taxa (dado por RT) - são utilizados como existem sinais de taxas diferentes. Bloco gerador de chamada de função (dado por f ()) - É utilizado para escrever no LCD apenas após um período de tempo especificado. Esse tempo deve ser um múltiplo inteiro do tempo do loop do programa. Agora indo para o bloco de entrada de hardware vamos ler o pino de entrada do sensor de temperatura (é o pino analógico onde o sensor de temperatura está conectado) e os dados do pino LDR. Também precisamos converter os dados de temperatura para graus Celsius. Estou usando o sensor de temperatura LM 35 e seu gráfico de calibração está facilmente disponível na internet (apenas o google). Precisamos usar a seguinte fórmula para converter, SensorReading Este valor será obtido a partir de sensor Próximo é o filtro. Aqui eu usei um filtro de média móvel de 10 pontos. Você pode usar qualquer outro filtro também. (Ver fig 10) Finalmente, precisamos fazer algum trabalho para enviar os dados para o LCD. Como o Simulink não pode enviar dados de tipo string e char, temos que usar algum método alternativo. Aqui estou enviando o valor ASCII do que deve ser impresso no LCD. Para isso precisamos criar uma lista de variáveis composta de possíveis caracteres a serem impressos com seus valores ASCII. (Como A, a, B, b, Z, z, 0,1,2,9 e, claro, o sinal decimal (.) Eo espaço ()). Os dados de temperatura estão em dados de tipo duplo e nós temos que convertê-lo em uma string. Se você ver a figura 11 o procedimento será claro. O barramento é usado para converter os 11 dados em uma matriz. Finalmente, vamos conectar o barramento à função S criada no passo anterior. (Ver figura 12). Agora podemos executar o modelo para ver a saída em LCD. Primeira média móvel Simulink modelo de negociação para código-fonte C Primeira média móvel Simulink modelo de negociação para código-fonte C Finally8230it está aqui tudo completo fim a fim Representação visual (criado dentro Matlab8217s Simulink e Stateflow ) De sua idéia de negociação para C em qualquer sistema operacional, incluindo Windows, Linux ou mesmo Mac OSX. De todos os anos em explorar e pesquisar, esta é a melhor maneira de construir a sua auto-alta velocidade auto sistema de comércio. É por isso que estou totalmente focado nesta nova abordagem, em oposição às outras abordagens barulhentas e perturbadoras que não mencionarei. Não só isso, você pode ter o mesmo modelo visual e código gerar para qualquer Hardware Description Language (HDL) para o seu fabricante de FPGA com VHDL ou Verilog. Como eu não sou um especialista neste espaço, vou deixar para os especialistas que tenho acesso para ajudar quando necessário. Apenas um FYI que FPGA é a latência mais baixa possível possível através de hardware especializado. Espero que este vídeo ajude a demonstrar essas capacidades. Para os interessados nos arquivos de amostra, eles podem ser baixados por meio da minha seção de Associação ELITE. Agora que esta metodologia foi concluída, podemos passar para a próxima fase de prototipagem de algumas estratégias do mundo real, tais como: Lembre-se que este pedido está lá fora também: Todas as futuras estratégias de negociação desenvolvidas através de Simulink será fornecido a todos os membros do Quant Elite NOTA Posto agora meus ALERTOS de COMÉRCIO em minha CONTA pessoal de FACEBOOK e em TWITTER. Não se preocupe como eu não posto vídeos de gato estúpido ou o que eu como Comer oi eu lá Meu nome é Bryan Downing. Eu sou parte de uma empresa chamada QuantLabs Esta é especificamente uma empresa com um blog de alto perfil sobre a tecnologia, comércio, financeiro, investimento, quant, etc. Ele publica coisas sobre como fazer entrevistas de trabalho com grandes empresas como Morgan Stanley, Bloomberg, Citibank , E IBM. Ele também publica diferentes dicas e truques exclusivos na programação em Java, C ou C. Ele publica sobre diferentes técnicas na aprendizagem sobre Matlab e construção de modelos ou estratégias. Há muito aqui se você estiver em se aventurar no mundo financeiro como quant ou análise técnica. Ele também discute a futura geração de trading e programação Especialidades: C, Java, C, Matlab, quant, modelos, estratégias, análise técnica, linux, janelas P. S. Fui conhecido por ser o pior datilógrafa. Não se ofenda por ele como eu gosto de bater coisas fora e colocar priorty do que eu faço mais de digitação. Talvez um dia eu possa obter um editor de cópia em tempo integral para ajudar. Nota Eu prefiro os vídeos, pois eles são muito mais fáceis de produzir, então confira meus muitos vídeos em youtubequantlabs Quero trocar como um chefe Saiba como Algo segredos podem melhorar sua vida Suas informações são 100 seguro conosco e nunca será sharedDocumentation Moving Average Method 8212 Método de estimativa Janela deslizante (predefinição) Peso exponencial Janela deslizante 8212 Uma janela de comprimento O comprimento da janela desloca-se sobre os dados de entrada ao longo de cada canal. Para cada amostra a janela se move, o bloco calcula a média sobre os dados na janela. Ponderação exponencial 8212 O bloco multiplica as amostras por um conjunto de factores de ponderação. A magnitude dos fatores de ponderação diminui exponencialmente à medida que a idade dos dados aumenta, nunca atingindo zero. Para calcular a média, o algoritmo soma os dados ponderados. Especifique o comprimento da janela 8212 Sinalizador para especificar o comprimento da janela em (padrão) desativado Quando você seleciona essa caixa de seleção, o comprimento da janela deslizante é igual ao valor especificado em Comprimento da janela. Quando você desmarca essa caixa de seleção, o comprimento da janela deslizante é infinito. Neste modo, o bloco calcula a média da amostra atual e todas as amostras anteriores no canal. Comprimento da janela 8212 Comprimento da janela deslizante 4 (padrão) positivo escalar inteiro O comprimento da janela especifica o comprimento da janela deslizante. Este parâmetro aparece quando você seleciona a caixa de seleção Especificar comprimento da janela. Esquecendo o fator 8212 Fator de ponderação exponencial 0,9 (padrão) real escalar real na faixa (0,1 Este parâmetro se aplica quando você define o Método para Ponderação exponencial Um fator de esquecimento de 0,9 dá mais peso aos dados mais antigos do que um fator de esquecimento de 0,1 Simples usando 8212 Tipo de simulação a ser executada Geração de código (padrão) Execução interpretada Simulação Usando código C gerado. A primeira vez que você executa uma simulação, Simulink x00AE gera código C. O código C é reutilizado para simulações subseqüentes, desde que o modelo não mude. Esta opção requer tempo de inicialização adicional, mas fornece mais rápido Simulação de modelo usando o interpretador MATLAB x00AE Esta opção reduz o tempo de inicialização, mas tem velocidade de simulação mais lenta do que o código geração . Mais Sobre Algoritmos Método de Janela Deslizante No método de janela deslizante, a saída para cada amostra de entrada é a média da amostra atual e das amostras anteriores de Len - 1. Len é o tamanho da janela. Para calcular as primeiras saídas Len - 1, quando a janela ainda não tem dados suficientes, o algoritmo preenche a janela com zeros. Como exemplo, para calcular a média quando a segunda amostra de entrada chega, o algoritmo preenche a janela com Len - 2 zeros. O vector de dados, x. É então as duas amostras de dados seguido de Len - 2 zeros. Quando você define a propriedade SpecifyWindowLength como false. O algoritmo escolhe um comprimento de janela infinito. Neste modo, a saída é a média móvel da amostra atual e todas as amostras anteriores no canal. Método de ponderação exponencial No método de ponderação exponencial, a média móvel é calculada recursivamente utilizando estas fórmulas: w N. x03BB x03BB w N x2212 1. x03BB 1. x x00AF N. x03BB (1 x2212 1w N. x03BB) xx00AF N x2212 X03BB) x N x x00AF N. x03BB 8212 Média móvel na amostra atual x N 8212 Dados atuais amostra de entrada x x00AF N x2212 1. x03BB 8212 Média móvel na amostra anterior 955 8212 Fator w N. x03BB 8212 Fator de ponderação aplicado à amostra de dados corrente (1 x2212 1 w N. x03BB) x x00AF N x2212 1. x03BB 8212 Efeito dos dados anteriores sobre a média Para a primeira amostra, onde N 1, o algoritmo escolhe w N. x03BB 1. Para a próxima amostra, o fator de ponderação é atualizado e utilizado para calcular a média, de acordo com a equação recursiva. À medida que a idade dos dados aumenta, a magnitude do factor de ponderação diminui exponencialmente e nunca atinge zero. Em outras palavras, os dados recentes têm mais influência sobre a média atual do que os dados mais antigos. O valor do fator de esquecimento determina a taxa de variação dos fatores de ponderação. Um fator de esquecimento de 0,9 dá mais peso aos dados mais antigos do que um fator de esquecimento de 0,1. Um fator de esquecimento de 1,0 indica memória infinita. Todas as amostras anteriores recebem um peso igual. Objetos do Sistema Selecione seu País2.1 Modelos de média móvel (modelos MA) Modelos de séries temporais conhecidos como modelos ARIMA podem incluir termos autorregressivos e / ou termos de média móvel. Na Semana 1, aprendemos um termo autorregressivo em um modelo de séries temporais para a variável x t é um valor retardado de x t. Por exemplo, um termo autorregressivo de atraso 1 é x t-1 (multiplicado por um coeficiente). Esta lição define termos de média móvel. Um termo de média móvel em um modelo de séries temporais é um erro passado (multiplicado por um coeficiente). Vamos (wt desviar N (0, sigma2w)), significando que os w t são identicamente, distribuídos independentemente, cada um com uma distribuição normal com média 0 e a mesma variância. O modelo de média móvel de ordem 1, denotado por MA (1) é (xt mu wt theta1w) O modelo de média móvel de 2ª ordem, denotado por MA (2) é (xt mu wt theta1w theta2w) , Denotado por MA (q) é (xt mu wt theta1w theta2w pontos thetaqw) Nota. Muitos livros didáticos e programas de software definem o modelo com sinais negativos antes dos termos. Isso não altera as propriedades teóricas gerais do modelo, embora ele inverta os sinais algébricos de valores de coeficientes estimados e de termos (não-quadrados) nas fórmulas para ACFs e variâncias. Você precisa verificar seu software para verificar se sinais negativos ou positivos foram usados para escrever corretamente o modelo estimado. R usa sinais positivos em seu modelo subjacente, como fazemos aqui. Propriedades Teóricas de uma Série de Tempo com um Modelo MA (1) Observe que o único valor não nulo na ACF teórica é para o atraso 1. Todas as outras autocorrelações são 0. Assim, uma ACF de amostra com uma autocorrelação significativa apenas no intervalo 1 é um indicador de um possível modelo MA (1). Para os estudantes interessados, provas destas propriedades são um apêndice a este folheto. Exemplo 1 Suponha que um modelo MA (1) seja x t 10 w t .7 w t-1. Onde (wt overset N (0,1)). Assim, o coeficiente 1 0,7. O ACF teórico é dado por Um gráfico deste ACF segue. O gráfico apenas mostrado é o ACF teórico para um MA (1) com 1 0,7. Na prática, uma amostra normalmente não proporciona um padrão tão claro. Usando R, simulamos n 100 valores de amostra usando o modelo x t 10 w t .7 w t-1 onde w t iid N (0,1). Para esta simulação, segue-se um gráfico de séries temporais dos dados da amostra. Não podemos dizer muito desse enredo. A ACF de amostra para os dados simulados segue. Observamos que a amostra ACF não corresponde ao padrão teórico do MA subjacente (1), ou seja, que todas as autocorrelações para os atrasos de 1 serão 0 Uma amostra diferente teria uma ACF de amostra ligeiramente diferente mostrada abaixo, mas provavelmente teria as mesmas características gerais. Propriedades teóricas de uma série temporal com um modelo MA (2) Para o modelo MA (2), as propriedades teóricas são as seguintes: Note que os únicos valores não nulos na ACF teórica são para os retornos 1 e 2. As autocorrelações para atrasos maiores são 0 . Assim, uma ACF de amostra com autocorrelações significativas nos intervalos 1 e 2, mas autocorrelações não significativas para atrasos maiores indica um possível modelo MA (2). Iid N (0,1). Os coeficientes são 1 0,5 e 2 0,3. Como este é um MA (2), o ACF teórico terá valores não nulos apenas nos intervalos 1 e 2. Os valores das duas autocorrelações não nulas são: Um gráfico do ACF teórico segue. Como quase sempre é o caso, dados de exemplo não vai se comportar tão perfeitamente como a teoria. Foram simulados n 150 valores de amostra para o modelo x t 10 w t .5 w t-1 .3 w t-2. Onde w t iid N (0,1). O gráfico de série de tempo dos dados segue. Como com o gráfico de série de tempo para os dados de amostra de MA (1), você não pode dizer muito dele. A ACF de amostra para os dados simulados segue. O padrão é típico para situações em que um modelo MA (2) pode ser útil. Existem dois picos estatisticamente significativos nos intervalos 1 e 2, seguidos por valores não significativos para outros desfasamentos. Note que devido ao erro de amostragem, a ACF da amostra não corresponde exactamente ao padrão teórico. ACF para Modelos Gerais MA (q) Uma propriedade dos modelos MA (q) em geral é que existem autocorrelações não nulas para os primeiros q lags e autocorrelações 0 para todos os retornos gt q. Não-unicidade de conexão entre os valores de 1 e (rho1) no modelo MA (1). No modelo MA (1), para qualquer valor de 1. O recíproco 1 1 dá o mesmo valor para Como exemplo, use 0,5 para 1. E então use 1 (0,5) 2 para 1. Você obterá (rho1) 0,4 em ambas as instâncias. Para satisfazer uma restrição teórica chamada invertibilidade. Restringimos modelos MA (1) para ter valores com valor absoluto menor que 1. No exemplo dado, 1 0,5 será um valor de parâmetro permitido, enquanto 1 10,5 2 não. Invertibilidade de modelos MA Um modelo MA é dito ser inversível se for algébrica equivalente a um modelo de ordem infinita convergente. Por convergência, queremos dizer que os coeficientes de RA diminuem para 0 à medida que avançamos no tempo. Invertibilidade é uma restrição programada em séries temporais de software utilizado para estimar os coeficientes de modelos com MA termos. Não é algo que verificamos na análise de dados. Informações adicionais sobre a restrição de invertibilidade para modelos MA (1) são fornecidas no apêndice. Teoria Avançada Nota. Para um modelo MA (q) com um ACF especificado, existe apenas um modelo invertible. A condição necessária para a invertibilidade é que os coeficientes têm valores tais que a equação 1- 1 y-. - q y q 0 tem soluções para y que caem fora do círculo unitário. Código R para os Exemplos No Exemplo 1, traçamos o ACF teórico do modelo x t 10w t. 7w t-1. E depois simularam n 150 valores a partir deste modelo e traçaram a amostra de séries temporais ea amostra ACF para os dados simulados. Os comandos R utilizados para traçar o ACF teórico foram: acfma1ARMAacf (mac (0.7), lag. max10) 10 lags de ACF para MA (1) com theta1 0.7 lags0: 10 cria uma variável chamada lags que varia de 0 a 10. plot (Lags, acfma1, xlimc (1,10), ylabr, typeh, ACF principal para MA (1) com theta1 0,7) abline (h0) adiciona um eixo horizontal ao gráfico O primeiro comando determina o ACF e o armazena em um objeto Chamado acfma1 (nossa escolha de nome). O comando de plotagem (o terceiro comando) traça defasagens em relação aos valores de ACF para os retornos de 1 a 10. O parâmetro ylab marca o eixo y eo parâmetro principal coloca um título no gráfico. Para ver os valores numéricos do ACF basta usar o comando acfma1. A simulação e as parcelas foram feitas com os seguintes comandos. Xcarima. sim (n150, lista (mac (0.7))) Simula n 150 valores de MA (1) xxc10 adiciona 10 para fazer a média 10. Padrões de simulação significam 0. plot (x, typeb, mainSimulated MA (1) data) Acf (x, xlimc (1,10), mainACF para dados de amostras simulados) No Exemplo 2, traçamos o ACF teórico do modelo xt 10 wt. 5 w t-1 .3 w t-2. E depois simularam n 150 valores a partir deste modelo e traçaram a amostra de séries temporais ea amostra ACF para os dados simulados. Os comandos R utilizados foram acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 parcela (lags, acfma2, xlimc (1,10), ylabr, tipoh, ACF principal para MA (2) com theta1 0,5, (X, typeb, main Simulado MA (2) Series) acf (x, xlimc (1,10), x2, MainACF para dados simulados de MA (2) Apêndice: Prova de Propriedades de MA (1) Para estudantes interessados, aqui estão as provas para propriedades teóricas do modelo MA (1). Quando h 1, a expressão anterior 1 w 2. Para qualquer h 2, a expressão anterior 0 (x) é a expressão anterior x (x) A razão é que, por definição de independência do wt. E (w k w j) 0 para qualquer k j. Além disso, porque w t tem média 0, E (w j w j) E (w j 2) w 2. Para uma série de tempo, aplique este resultado para obter o ACF fornecido acima. Um modelo MA reversível é aquele que pode ser escrito como um modelo de ordem infinita AR que converge de modo que os coeficientes AR convergem para 0 à medida que nos movemos infinitamente para trás no tempo. Bem demonstrar invertibilidade para o modelo MA (1). Em seguida, substitui-se a relação (2) para wt-1 na equação (1) (3) (zt wt theta1 (z-theta1w) wt theta1z-theta2w) No tempo t-2. A equação (2) torna-se Então substituimos a relação (4) para wt-2 na equação (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z-theta12z theta31w) Se continuássemos Infinitamente), obteríamos o modelo AR de ordem infinita (zt wt theta1 z - theta21z theta31z - theta41z pontos) Observe, no entanto, que se 1 1, os coeficientes multiplicando os desfasamentos de z aumentarão (infinitamente) Tempo. Para evitar isso, precisamos de 1 lt1. Esta é a condição para um modelo MA (1) invertible. Infinite Order MA model Na semana 3, bem ver que um modelo AR (1) pode ser convertido em um modelo de ordem infinita MA: (xt - mu wt phi1w phi21w pontos phik1 w dots sum phij1w) Esta soma de termos de ruído branco passado é conhecido Como a representação causal de um AR (1). Em outras palavras, x t é um tipo especial de MA com um número infinito de termos voltando no tempo. Isso é chamado de ordem infinita MA ou MA (). Uma ordem finita MA é uma ordem infinita AR e qualquer ordem finita AR é uma ordem infinita MA. Lembre-se na Semana 1, observamos que um requisito para um AR estacionário (1) é que 1 lt1. Vamos calcular o Var (x t) usando a representação causal. Esta última etapa usa um fato básico sobre séries geométricas que requer (phi1lt1) caso contrário, a série diverge. Navegação
No comments:
Post a Comment